ENGINEERING DESIGN PROCESS

FRC Team 1640 Sab-BOT-age
Mike Geldart

- 5 Years involved in FRC
 - Student – Team 1902, 2614
 - Mentor – Team 1640 (2012-present)
- Mechanical Engineering Student – Delaware County Community College
Andrew Weissman

- 5 years in FRC (8 years in FIRST)
 - Student – Team 1640 (2010-2012, Co-captain & Driver 2012)
 - Mentor – Team 1640 (2012-present)
- Mechanical Engineering Student – Delaware County Community College
Engineering Design Process

- **What is it?**
 - Design new products
 - Iterate existing products
 - Make them better
 - Design systems
 - Large scale – manufacturing systems
 - Small scale – product subsystem
How does this apply to FIRST?

- IT’S WHAT WE DO!
- We use this process to design our robots and all of its’ subsystems
- Also award entries, business strategies, training, etc.

Circular, non-linear process

- Return to any point during the process

So, what exactly is it?

- Varies industry-to-industry, but the fundamentals are the same
Implementation and Iteration

Strategic Design

- Define the Problem
- Research
- Define Specs
- Brainstorm
- Prototype
- Choose
- Refine
- Design Review
- Implement
- Test
- Iterate

Engineering Design Process

Note: this separation is for this presentation series.
Define the Problem

- Beginning of Strategic Design
 - Define what you need to accomplish
 - What are this year’s objectives? Rules? Penalties?

- The objective is to UNDERSTAND the game inside and out and to determine possible game strategies

- For a more in-depth description of Strategic Design, please watch:
 - https://www.youtube.com/watch?v=4ysSvxR-tAs
 - https://www.youtube.com/watch?v=smWy7FQ8jLE

Define the Problem

- Create a Scoring Model
 - Define ALL tasks/actions
 - Define value for accomplishing tasks/actions
 - Some tasks/actions might not have a point value, but do have a time value
 - Define probability of completion for each task/action

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Seconds to Completion</th>
<th>Probability of Completion</th>
<th>Point Value</th>
<th>Cumulative Probability</th>
<th>Expected Value</th>
<th>Tele-Op Time (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Score High</td>
<td>10</td>
<td>75%</td>
<td>10</td>
<td>75%</td>
<td>7.5</td>
<td>140</td>
</tr>
<tr>
<td>Time to Hurdle</td>
<td>8</td>
<td>100%</td>
<td>10</td>
<td>100%</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>First Assist</td>
<td>10</td>
<td>80%</td>
<td>10</td>
<td>60%</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Second Assist</td>
<td>10</td>
<td>75%</td>
<td>20</td>
<td>45%</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ball Return Time</td>
<td>10</td>
<td>100%</td>
<td>0</td>
<td>100%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Catch</td>
<td>15</td>
<td>10%</td>
<td>10</td>
<td>10%</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resulting Teleop Scores</th>
<th>Best Case Score</th>
<th>P(Best Case)</th>
<th>Expected Value</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Robot Scoring</td>
<td>70.00</td>
<td>75%</td>
<td>52.50</td>
<td>Bad</td>
</tr>
<tr>
<td>One Robot Hurdle & Score</td>
<td>100.00</td>
<td>75%</td>
<td>87.50</td>
<td>Great</td>
</tr>
<tr>
<td>One Assist, Score</td>
<td>93.33</td>
<td>60%</td>
<td>63.00</td>
<td>Bad</td>
</tr>
<tr>
<td>One Assist, Hurdle & Score</td>
<td>110.53</td>
<td>60%</td>
<td>86.58</td>
<td>Great</td>
</tr>
<tr>
<td>One Assist, Hurdle, Catch & Score</td>
<td>105.66</td>
<td>6%</td>
<td>64.72</td>
<td>Bad</td>
</tr>
<tr>
<td>Two Assist, Score</td>
<td>140.00</td>
<td>45%</td>
<td>78.75</td>
<td>Okay</td>
</tr>
<tr>
<td>Two Assist, Hurdle & Score</td>
<td>145.83</td>
<td>45%</td>
<td>94.79</td>
<td>Great</td>
</tr>
<tr>
<td>Two Assist, Hurdle, Catch & Score</td>
<td>133.33</td>
<td>5%</td>
<td>74.44</td>
<td>Okay</td>
</tr>
</tbody>
</table>
Define the Problem

- Develop game strategies
 - Decide on a game strategy utilizing your scoring models and determine all possible game strategies
 - LET THIS STRATEGY GUIDE YOUR DESIGN!!!
 - Don’t let your design dictate your strategy!
 - What happens when your strategy has to play with other strategies? With the same strategy? Against your strategy? Against other strategies?
Research

- See what has been done in the past to accomplish this task
- FIRST games may share similarities with previous games
Research

- Look in industry to find inspiration
- Look on the web
 - Chief Delphi
 - FRC Designs
 - The Blue Alliance
 - VEX/FTC
 - Google
Define Specifications

- This is where we start to define WHAT we want to do

- Two types of specifications:
 - **Design Constraints**
 - Specifications that the robot MUST follow
 - Max height; Max weight; # of motors; follow all rules; must be manufacturable; Can’t reach # outside from robot; Is within budget; etc.
 - **Functional Requirements**
 - What the team believes the robot should be able to do
 - Hold # of game pieces; Mechanism can lift # tall; Mechanism is # fast; etc.
 - Expand these requirements with what you Wish, Prefer, and Demand the robot be able to do
Brainstorm

- Moving into Mechanism Design (separate PowerPoint will elaborate on these parts of the process)
- Begin to determine HOW to accomplish specs and perform strategy
- Napkin Sketches
- Utilize your research
Prototype

- Create some of the concepts from brainstorm
- Collect data from the prototypes **under real-world conditions**
 - Doesn’t matter if it can hold 1000 of a game piece if it can’t score them in the allotted game period
- Begin to utilize CAD if necessary
 - Makes choosing/designing the final product easier in the long run
- Try to see if your specs will work or need tweaking
- Try to find any critical components to the design
- DON’T MAKE THE PROTOTYPES “Yours”; they’re the team’s prototypes
- Record all successes and failures and iterate the prototypes
Choose

- Can’t prototype forever
- Need to pick a direction
- How?
 - Put prototypes against each other using QUANTITATIVE data
 - Do they meet the specifications? How well do they meet them? Can they meet them better?
 - Weighted-Objectives Table
- DON’T PERSONALIZE the designs!
Weighted-Objectives Table

- Use specifications
 - Add weight to specs based on importance to strategy/team
- Give the prototypes a value for each specification
 - Based on the quantitative data
- Multiply these values by the weight and sum the resulting values
Refine

- Begin to design the final product
 - Utilize CAD!
 - Math and Physics!
 - Make sure you can make it!

- Determine design calculations
 - Someone might have done it before – see what you can find
 - Excel is your friend!
When designing the final product, keep in mind:

- **Modular design**
 - Quickly and easily replaceable parts
- **Interchangeable replaceable parts**
 - No “left side” or “right side” parts
- **Robustness**
 - FIRST is a contact sport
- **Serviceability**
 - If parts need to be repaired on-robot, make sure hands and tools can get where they need to be
- **Don’t go overboard with different sizes and types of hardware**
 - Using only a few sizes and types of nuts, bolts, washers, etc. reduces the number of tools and spare hardware needed at competition
Design Review

- Review your design
 - Minimum: with student leads and mentor leads
 - Maximum: with entire team (can be too much)
 - Go over why design decisions were made
 - Address any potential design issues
 - Address potential critical design points
 - Does it meet the specs?
Implement

- Time to put everything together
- Systems integration
 - Put your robot together
 - See if any designs interfere with each other
 - Should have been done in CAD before, but might have missed it
Test

- MAKE SURE EVERYTHING WORKS
- If not, what can be done to make it work?
 - Does it really need to be completely redesigned?
 - Are you sure?
- Let it run under it’s own power and it’s own code (if ready)
- See if it meets the specifications and see if it can complete the strategy
Iterate

- Can it work better? More efficiently? Faster?
- Can it be lighter?
 - Is it possible to make it lighter?
- Does it meet all the specifications?
 - What can we do to make it meet the specs?
- Restart the process when/where necessary
Some Notes

- Don’t make designs/prototypes personal
 - That makes choosing personal

- Use quantitative data when choosing
 - Don’t pick a design because you “feel it’ll work” or because you “want this design”
 - This and/or the first point will degrade the choosing process until it becomes a screaming match, which is NOT how a design is chosen

- Remember: GP applies all the time!
Some Notes

- Don’t design something that you can’t make
- Only given 6 weeks and 3 days!
- Make sure you can assemble the systems and put them on the robot
 - If parts need to be welded to the chassis, then that needs to be determined and conveyed ASAP
- Make sure parts can be repaired
 - Things break
 - Murphy’s Law (Stuff happens at the worst possible moment)
- Try not to start brainstorming immediately after kickoff
 - Understand the game and define your strategy first
Questions?
Contact

- Mike Geldart
 - mikegeldart@me.com

- Andrew Weissman
 - andrewweissman07@gmail.com

- Team 1640
 - Facebook
 - Sab-BOT-age: FIRST Robotics Team 1640 (Sabotage)
 - Twitter - @FRCTeam1640
 - Website